UUCMS, No.	
	L <u> </u> T
I SEMESTER END EXAMINATION – APRIL 2024 M.Sc. MATHEMATICS - ORDINARY DIFFERENTIAL EQUATIONS (CBCS Scheme-F+R) Ourse Code MM104T uration: 3 Hours Ourse Code MM104T uration: 3 Hours 1 (a) Establish Liouville's formula for n th order differential equation in its usual form. (b) Find the Wronskian of independent solution of $y^{0} - y^{4} - y' - y = 0$, $x \in (-\infty, \infty)$. (7+7) 2 . (a) State and prove Sturm's comparison theorem on the zeros of a self-adjoint differential equation. (b) Solve the differential equation $x^{2}y'' - xy' - 3y = x^{3}$ by the method of variation of parameters (7+7) 3 . (a) Prove that the eigenfunctions corresponding to distinct eigenvalues of a self-adjoint eigenvalue problem are orthogonal over the relevant interval. (b) Find the eigenfunctions corresponding to distinct eigenvalues of a self-adjoint eigenvalue problem are orthogonal over the relevant interval. (b) Find the eigenfunctions corresponding to distinct eigenvalues of a self-adjoint $\frac{d}{dx}(xy') + \frac{\lambda}{x}y = 0; y'(1) = 0 = y'(e^{2\pi}).$ (7+7)	
	EQUATIONS
Course Code MM104T Duration: 3 Hours	-
1. (a) Establish Liouville's formula for n th order differential equation (b) Find the Wronskian of independent solution of $y^5 - y^4 - y' - y$	-y=0,
differential equation. (b) Solve the differential equation $x^2y'' - xy' - 3y = x^3$ by the	method of variation
eigenvalue problem are orthogonal over the relevant interval. (b) Find the eigenvalues and eigenfunctions of the differential equa	ation
adjoint equation.	the solution of its
$d^2 y$	

- 5. (a) Discuss about ordinary and singular point of the equation $x \frac{d^2y}{dx^2} + (1-x)y' + \alpha y = 0$. (b) Find a solution of the Hermite equation $y'' - 2xy' + 2\alpha y = 0$ using Frobenius method about the ordinary point x=0.
 - (c) Prove that e^{2xt-t^2} is the generating function for the Hermite polynomial. (4+5+5)
- 6. (a) Derive the following recurrence relation for the Laguerre polynomials: $(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) - nL_{n-1}(x)$

BMSCW LIBRARY

(b) Prove that
$$\int_0^\infty e^{-x} L_m(x) L_n(x) dx = \begin{cases} 1, m = n \\ 1, m \neq n \end{cases}$$
 (7+7)

7. Find the fundamental matrix solution of the following system of equations

(a)
$$\frac{dx}{dt} = 6x - 3y; \ \frac{dy}{dt} = 2x + y$$

(b) $\frac{dx}{dt} = x + y - 5t + 2; \ \frac{dy}{dt} = 4x - 2y - 8t - 8$ (7+7)

8. (a) Determine the nature and stability of the critical point of the system

$$\frac{dx}{dt} = 8x - y^2; \ \frac{dy}{dt} = -6y + 6x^2.$$

(b) Apply Liapunov direct method to determine the stability of the critical point (0, 0)

of the system
$$\frac{dx}{dt} = -x^5 - y^3$$
; $\frac{dy}{dt} = 3x^3 - y^3$. (7+7)

